Rise Time of Logistice Equation

An expression for the rise time of a logistic function is derived, where rise time is defined to be the time taken for a logistic to rise from 10% to 90% of the final value.

An expression for the average slope between the 10% and 90% of final value marks is also derived.

The Logistic Equation can be written
$P(t)=\frac{\beta}{\delta+(\beta-\delta) \cdot e^{-\beta \cdot\left(t-t_{0}\right)}}$
where

$$
\begin{aligned}
& \mathrm{t}_{0}=\text { time of first case } \\
& P\left(t_{0}\right)=1 \quad \text { and } \\
& \left.P(t=\infty)=\frac{\beta}{\delta} \quad \text { since second (exponential) term on denominator } \rightarrow 0\right)
\end{aligned}
$$

define rise time $=$ time for $\mathrm{P}(\mathrm{t})$ to rise from 10% to 90% of $P(\infty)$
Let

$$
\begin{aligned}
& t_{a}=\text { time at which } P(t)=a \cdot P(\infty) \\
& \mathrm{Q}(t)=(\beta-\delta) \cdot e^{-\beta \cdot\left(t-t_{0}\right)}
\end{aligned}
$$

then at t_{a},

$$
P\left(t_{a}\right)=\frac{\beta}{\delta+Q\left(t_{a}\right)}=a \cdot \frac{\beta}{\delta}
$$

solving...

$$
\therefore \quad Q\left(t_{a}\right)=\frac{\delta \cdot(1-a)}{a}
$$

Rise Time of Logistic Equation

$\therefore(\beta-\delta) \cdot e^{-\beta \cdot\left(t_{a}-t_{0}\right)}=\frac{\delta \cdot(1-a)}{a}$
Solving for t_{a} :
$\therefore e^{-\beta \cdot\left(t_{a}-t_{0}\right)}=\frac{\delta \cdot(1-a)}{(\beta-\delta) \cdot a}$
$\therefore-\beta \cdot\left(t_{a}-t_{0}\right)=\ln \left[\frac{\delta(1-a)}{(\beta-\delta) \cdot a}\right] \quad(\ln$ is logarithm base e)
$\therefore t_{a}=t_{0}+1 / \beta \cdot \ln \left[\frac{(1-a)}{(\beta / \delta-1) \cdot a}\right] \quad \ldots$ Eqn 3
\therefore Rise Time $=t_{0.9}-t_{0.1}=1 / \beta \cdot\left\{\ln \left[\frac{1}{9(\beta / \delta-1)}\right]-\ln \left[\frac{9}{(\beta / \delta-1)}\right]\right\}$
but
$\ln (a / b)=\ln (a)-\ln (b)$,
SO
\mid Rise Time $\left|=\left|1 / \beta \ln \left(\frac{1}{81}\right)\right|=\left|\frac{\ln (81)}{\beta}\right|\right.$
It can also be shown that the slope between 10% and 90% levels is :
Rise Slope $=\frac{0.8 \cdot \beta / \delta}{\frac{\ln (81)}{\beta}}=\frac{0.8}{\ln (81)} \cdot \frac{\beta^{2}}{\delta}=0.182 \cdot \frac{\beta^{2}}{\delta} \quad$ (cases per day)

For studying epidemics, infection spread occurs over several days. A curve which rose over just one day might be sampling a single source or too small a number of sources to be reliable as an indication of how the epidemic will progress

To eliminate this possibility, the search for a fitting epidemic curve should be constrained.
A constraint like

$$
\beta<\ln (81)
$$

will ensure this $(\ln (81)=2.48)$.

Author: K Duffy, May $12^{\text {th }}, 2003$

